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Lattice restricted primitive models, where equally charged ions of a diameters are located at sites of a
simple cubic lattice with a lattice constanta, are studied within the field-theoretic approach. We focus on the
transition between charge-disordered and charge-ordered phases fors /a=1 and s /a=2. By using
renormalization-group methods we show that at high concentrations of ions the transition is continuous for
s /a=1, while for s /a=2 it is only first order, as found previously in simulations. Fors /a=1 the effect of
charge-density fluctuations on the positions of the continuous transition and the tricritical point(TCP) is
determined within a formalism developed in this work. The temperature and the concentration of ions at the
TCP agree very well with simulation results.
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I. INTRODUCTION

Phase transitions and critical phenomena in ionic systems
have been a subject of an intensive debate for many years.
The simplest systems correspond to anions and cations hav-
ing identical charges and very similar sizes. In the corre-
sponding restricted primitive model(RPM) hard spheres of a
diameters and charges ±e are immersed in a structureless
solvent with a dielectric constantD. Experiments[1,2],
simulations[3–8] and fluid theories(mean-spherical approxi-
mation [9,10] and extensions of the Debye-Hückel theory
[11,12] ) show coexistence between uniform ion-dilute and
ion-dense phases with an associated critical point(CP) at low
concentrations of ions, and crystallization at high concentra-
tions. After long-lasting debate concerning the nature of criti-
cality in the RPM, recent experiments[1], simulations[6,7]
and field theory[13,14] all indicate that the critical point
belongs to the Ising universality class. Unlike in simple flu-
ids, however, the phase diagrams in the RPM depend on the
space discretizations /a when the ions are restricted to lat-
tice sites on a simple cubic(sc) lattice with a lattice constant
aøs [3,15–17]. For s /a=1 only order-disorder transition
between charge-disordered and charge-ordered phases(two
oppositely charged sublattices) with an associated tricritical
point (TCP) occurs; fors /a=2 the order-disorder transition
is only first order, i.e. the TCP disappears. Fors /aù3 the
phase diagram is of the same type as in continuum space.

Landau theory introduced in Ref.[13] predicts that only
an order-disorder transition between charge-disordered and
charge-ordered phases with an associated tricritical point
(TCP) occurs. This result agrees with the RPM phase-
behavior on the sc lattice, and is in a sharp qualitative dis-
agreement with the phase diagram in continuum system. The
failure of the Landau mean field(MF) theory in the con-
tinuum indicates particularly important role of fluctuations in
ionic systems and a strong dependence of the role of fluctua-
tions on space discretization. One should note that in the
theories predicting correct topological structure of the phase
diagram in the continuum RPM[9–12] the charge-
correlations are partially included.

In this work we focus on qualitative and quantitative ef-
fects of fluctuations on phase transitions in the RPM in the
framework of the field theory developed in Ref.[13]. There
are two order parameters(OP) in the RPM: the local charge,
fsxd, and number,rsxd, densities. Short-wavelength charge-
density fluctuations dominate[18] and lead to the charge-
ordered–charge-disordered phase transition. For different
space discretizationss /a this transition, continuous in MF,
may become fluctuation-induced first-order[16,17]. The
OP’s are coupled beyond the Gaussian part of the functional,
therefore in our theory also the ion-poor–ion-rich phase
separation is found when the charge-density fluctuations are
integrated out[13,14]. Here we shall focus only on the order-
disorder transition.

Systematic study of the effect of the charge-density fluc-
tuations on phase diagrams for different values ofs /a was
begun in Ref.[16] in an approach following the Brazovskii
theory [19]. According to the Landau-Brazovskii theory,

when at the spinodalG=ek G̃ffskd→`, whereG̃ffskd is the
OP correlation function in Fourier representation, the order-
disorder transition is fluctuation-induced first-order, although
MF predicts a continuous transition. It turns out that in con-
tinuum, on the fcc lattice and in model I(excluded simulta-
neous occupancy of the nearest-neighbor sites), G diverges at
the spinodal[16,17], i.e., the transition is fluctuation-induced
first-order. Fors /a=1 as well as fors /a=2,G is finite.
Simulations, however show continuous transition fors /a
=1, and first order transition fors /a=2. In this work we
consider the sc lattice withs /a=1 (denoted by “sc”) and
s /a=2 (denoted by “model III” after Ref.[16] ). Using the
renormalization-group(RG) method we present convincing
arguments that the transition is continuous(at high tempera-
tures) and first-order in the first and in the second model
respectively.

The effect of fluctuations on the position of thel-line in
the case of the sc lattice has been studied in Ref.[20] within
Debye-Hückel(DH) theory and in Ref.[21] within hierarchi-
cal reference theory(HRT). In the case of the DH theory the
temperature at the TCP deviates from the result of simula-
tions [3,4] by more than 100%. In the second theory the
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accuracy is better, i.e., for the temperature at the TCP the
relative difference from the simulation result is,30%. In
this work we determine the shift of the line of continuous
order-disorder transitions( l-line) on the sc lattice within the
field-theory developed in Ref.[13]. The shifts of temperature
and density at the TCP and along thel-line are obtained by
using the self-consistent Hartree approximation and the
weighted field theory[13], respectively. The results agree
very well with simulations.

In Sec. II the models withs /a=1 (sc) ands /a=2 (model
III ) are introduced and the MF theory is briefly described. In
Sec. III the weighted field approximation is developed. Sec-
tion IV contains the analysis of the effects of charge-density
fluctuations on the order of the charge-ordered–charge-
disordered transition in the two models. The position of the
l-line for s /a=1 is found in Sec. V. Section VI contains a
short summary.

II. THE MODELS AND THE MEAN-FIELD
APPROXIMATION

The Hamiltonian of the lattice restricted primitive model
(LRPM) in the general case of ions that can have extended
cores on the sc lattice is given by[16]

H =
E0

2 o
x

o
x8

Vsux − x8udŝsxdŝsx8d, s1d

where ŝ= +1,−1,0 represents the anion, the cation and the
solvent(or vaccum in the case of molten salts), respectively.
The lattice sites arex=xie

i, whereei are the unit lattice vec-
tors,xi are integer numbers,i =1,2,3,summation convention
is used and the distance is measured ina units. The energy
unit is E0=e2ann

2 /Dv0, whereD is the dielectric constant of
the solvent,ann is the distance between nearest-neighbor sites
andv0 is the volume per lattice site[20]. The corresponding
dimensionless temperature isTE=1/bE=kT/E0. TE=T* for
s /a=1, whereT* =kTDs /e2 is the standard reduced tem-
perature. Finally,

VsuDxud = gsuDxudVcsuDxud, s2d

whereVcsux−x8ud is the dimensionless Coulomb potential on
the sc lattice(see the Appendix) and the form ofgsux−x8ud
follows from the requirement that the contribution to the
electrostatic energy from ions occupying forbidden pairs of
sites is not included in Eq.(1). Hence for both considered
models we assumegsuDxud=0 for uDxu smaller than the ion
diameter, andgsuDxud=1 for uDxuùs. The explicit form ofg
for s /a=1 is thus

gscsuDxud = 1 −dKrsuDxud. s3d

In model III the sites inside the 33333 cube cannot be
occupied simultaneously with the central site of this cube,
therefore for model III we have

gIII suDxud = 1 −dKrsuDxud − o
i

dKrsuDx ± eiud

− o
i, j

dKrsuDx ± ei ± ejud − dKrsuDx ± e1 ± e2 ± e3ud.

s4d

In Fourier representation we obtain the following forms of

the potentialṼ in the two considered cases:

Ṽscskd = Ṽcskd − 2pV0
sc sscd s5d

and

ṼIII skd = Ṽcskd − 2pfV0
sc+ 6V1

scf̃scskd + 12V2
scf̃ fccskd

+ 8V3
scf̃bccskdg smodel IIId. s6d

The lattice Coulomb potentialṼcskd, the lattice characteristic

functions f̃ lattskd and the constantsVn
sc for n=0–3 aregiven

in the Appendix.
We consider an open system with equal chemical poten-

tials of the two ionic species,m+=m−. Thus, in the case of
molten salts only one chemical potential is independent. Be-
cause of close packing(each site is occupied either by an ion
or by a solvent molecule), also in the case of solutions there
is only one independent chemical potential. The natural
choice is m=1/2sm++m−d−m0, i.e., the chemical potential
difference between the solutem+=m− and the solvent,m0 (for
molten salts we assume the samem with m0=0). The mi-
crostates with overlapping hard spheres, i.e.,hŝsxdj such that
there existx and DxÞ0 for which ŝsxdŝsx+Dxd(1−gsDxd)
Þ0, are excluded. Only ions cannot overlap in this model
(the solvent is “structureless”). The probability of the al-
lowed microscopic statehŝsxdj is

pfhŝsxdjg = J−1 expf− bsHfhŝsxdjg − mo
x

ŝ2sxddg. s7d

In the above J=ohŝsxdj exp[−b(Hfhŝsxdjg−mox ŝ2sxd)],
where ohŝsxdj means summation over allowed microstates.
Thermodynamics is determined by the grand thermodynamic
potentialV=−kT log J. The symmetry of Eq.(7) with re-
spect toŝ→−ŝ leads tokŝl=0. Note, however that for oppo-
sitely charged nearest neighbors the Hamiltonian(1) assumes
very low negative values. In contrast, the Hamiltonian as-
sumes very large, positive values whenŝsxd.0 [or ŝsxd,0]
for x belonging to a large, coherent region. As a conse-
quence, spontaneous symmetry breaking,kŝsxdlÞ0, is asso-
ciated with violations of the charge neutrality in microscopic
regions (neighboring regions being oppositely charged).
Moreover, in thermodynamic limit global charge neutrality
fox kŝsxdl=0g should be obeyed.

In the MF approximation the average charge and number
densities are identified with the most probable values,f0,r0.
These fields correspond to a global minimum of the grand-
potential functional in the MF approximation
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bVMFff,rg = bFhsff,rg + bUffg − bmo
x

rsxd, s8d

whereFhsff ,rg is the free energy of the uncharged reference
system. Fors /a=1 it has the form of the ideal entropy of
mixing,

bFhsff,rg = o
x
Fr + f

2
logSr + f

2
D +

r − f

2
logSr − f

2
D

+ s1 − rdlogs1 − rdG . s9d

In model III Fhsff ,rg assumes a different form. However,
the order of the order-disorder transition is independent of
the form ofFhsff ,rg, as will be shown later.

The electrostatic energyUffg in Fourier representation is
given by

Uffg =
E0

2
E

k
Ṽskdf̃skdf̃s− kd, s10d

whereṼskd is given in Eqs.(5) and (6) for the two models,
k =sk1,k2,k3d and we use the notation

E
k

; E
−p

p dk1

2p
E

−p

p dk2

2p
E

−p

p dk3

2p
. s11d

The charge and number densitiesf andr are dimensionless;
the average dimensionless-densityr is the fraction of ion-
occupied sites.

VMF given in Eq.(8) can be expanded about its minimum
at fsxd=0, rsxd=r0. The expansion inf andDr=r−r0 has
the form

VMFff,rg = VMFf0,r0g +
1

2o
x1

o
x2

Cff
0 sx1,x2dfsx1dfsx2d

+
1

2o
x1

o
x2

Crr
0 sx1,x2dDrsx1dDrsx2d

+ o
m.1,n.2

o
r 1

¯o
r 2m

o
x1

¯o
xn

g2m,n

s2md ! n!

3fsr 1d ¯ fsr 2mdDrsx1d ¯ Drsxnd, s12d

where g2m,n, given by respective derivatives ofVMF at f
=0,r=r0, are functions of r0. Following the density-
functional theory [22], the charge-charge and number-
number correlation functionsGff

0 and Grr
0 are defined as

inverse(in the matrix sense) to the second functional deriva-
tives of bVMF. In Fourier representation we thus have the
following forms of the correlation functions in the uniform
phase(f=0, r=r0) [13]

G̃ff
0–1skd = C̃ff

0 skd =
d2bVMF

df̃skddf̃s− kd
= r0

−1 + bEṼskd

s13d

and

G̃rr
0–1skd = C̃rr

0 skd =
d2bVMF

dr̃skddr̃s− kd
=

d2bFhs

dr̃skddr̃s− kd
. 0,

s14d

respectively.C̃rr
0 .0, therefore there is no transition between

two fluid phases on the MF level. The continuous transition

to the charge-ordered phase is given byr0
−1+bEṼskbd=0

where atk =kb, Ṽskd assumes a minimum. The instability of
the uniform phase is induced by dominant fluctuations
fsxd=F cossx ·kbd, which correspond to the largest decrease
of the electrostatic energy for a given amplitudeF of the
charge-wave.

For s /a=1, kb=ps±1, ±1, ±1d [13,15], whereas in
model III the potential(6) assumes a minimum at coski =z
for i =1,2,3,wherez satisfies the equation

1

9s1 − zd2 = 2V1
sc+ 8V2

scz+ 8V3
scz2. s15d

We find z<0.708, which is close to cossp /4d. The bifurca-
tion vector is thuskb=kbs±1, ±1, ±1d, where our simple ap-
proximation giveskb<p /4. The order-disorder transition
line is

S= Sl
MF, s16d

where

S= TE/r0, Sl
MF = − Ṽskbd. s17d

For s /a=1, Sl
MF<2.13 [13,15] and in model III we find

Sl
MF<3.2. The continuous transition to the charge-ordered

phase, predicted by the above MF approximation, indeed oc-
curs fors /a=1 [3,20,21]. However, the MF value ofSat the
l-line, and consequently the temperature at the TCP,Ttc

E

<0.7 [15], are significantly overestimated, compared to the
simulation resultsTtc

E <0.14 (Ref. [4]) and Ttc
E <0.15 (Ref.

[3] ). Only first-order transition was found for model III in
simulations[3].

III. FIELD THEORY FOR THE LRPM

A. Fundamentals

The field-theoretic approach to the RPM closely follows
the theory developed for a description of critical phenomena
in simple and complex fluids. Instead of considering micro-
scopic stateshŝsxdj, we consider smooth order-parameter
(OP) fields (functions in the lattice case) within a coarse-
grained description[23]. Such description is justified when
the instability of the disordered phase is induced by small-
amplitude fluctuations, i.e., for continuous or weakly first-
order transitions. The formalism described below is quite
general, except that the explicit forms of the coupling con-
stants depend on the model. The coupling constants are
needed for a determination of quantitative effects of fluctua-
tions. Only for s /a=1 the quantitative effects are studied,
and only for this model the explicit forms of the coupling
constants will be given.

According to the fluctuation theory of Landau, the fluc-
tuationsfsxd and rsxd are excited with a probability deter-
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mined by the corresponding increase of the grand thermody-
namic potential. We therefore postulate that in an open
system the probability offsxd and rsxd is proportional to
exps−bVMFd. Following the standard procedure we intro-
duce spatially varying external fields(sources) m̄sxd
=m+Dmsxd andJsxd, and the functionals of them

JfJsxd,m̄sxdg =E DrE Df expf− bsVMFff,rg

− o
x

Dmsxdrsxd − o
x

Jsxdfsxddg, s18d

− bVfJsxd,m̄sxdg

=log J, s19d

where in continuum systems sums over lattice sites should be
replaced by integrals edr over space positions.
−bVfJsxd ,m̄sxdg is the generating functional for the(con-
nected) correlation functions. In particular,

U ds− bVd
d„bm̄sxd…

U
Dmsxd=0

= krsxdl, s20d

U d2s− bVd
d„bm̄sx1d…d„bm̄sx2d…

U
Dmsxd=0

= Grrsx1,x2d

= krsx1drsx2dl − krsx1dlkrsx2dl, s21d

etc., with similar relations for the charge-density correla-
tions. Double Legendre transform of −VfJsxd ,m̄sxdg is, up to
minus sign, the Helmholtz free energy functional of the av-
erage OP fields,

Gfkfl,krlg = V + o
x

Jsxdkfsxdl + o
x

m̄sxdkrsxdl. s22d

The high-temperature, disordered phase is at the boundary of
stability when the matrix of second functional derivatives of
G is no longer positive definite.

G is the generating functional for the vertex functions
[23]. Expanding about the values of the average OPkfl=0
and krl=r0 we obtain

Gff̄,r̄g = Gf0,r0g + o
x

mDr̄sxd

+
1

2o
x1

o
x2

Cffsx1,x2df̄sx1df̄sx2d

+
1

2o
x1

o
x2

Crrsx1,x2dDr̄sx1dDr̄sx2d

+ o
m.1,n.2

o
r 1

¯o
r 2m

3o
x1

¯o
xn

G2m,nsr 1, . . . ,r 2m,x1, . . . ,xnd
s2md ! n!

3f̄sr 1d ¯ f̄sr 2mdDr̄sx1d ¯ Dr̄sxnd, s23d

where we have simplified the notation by introducingf̄
=kfl, r̄=krl, andDr̄sxd= r̄−r0. The vertex functions in Eq.

(23) are calculated atf̄=0, r̄=r0. The two-point vertex func-
tions, Cff and Crr are inverse to the full correlation func-

tions, G̃ffskd andG̃rrskd, respectively.
In MF the vertex functionsG2m,n reduce tog2m,n, and the

correlation functions reduce toGff
0 and Grr

0 when all g2m,n
are neglected in Eq.(12), i.e., in the Gaussian approximation.
In the perturbation theoryCff, Crr and G2m,n are given by
appropriate one-particle irreducible Feynman diagrams ac-
cording to standard rules[23]. In these diagrams there are
several types of verticesg2m,n and two types of lines, corre-
sponding to the Gaussian correlation functionsGff

0 andGrr
0

[see Eqs.(13) and (14)]. The lines representing

Grr
0 sx1,x2d = Grr

0 dsx1 − x2d, s24d

are degenerate in the sense that they do not connect different
points. In the abovedsx1−x2d represents the Kronecker and
the Dirac delta function on the lattice and in continuum,
respectively. Fors /a=1 Grr

0 =r0s1−r0d, and in general it is
a positive function ofr0. From the vertexg2m,n there ema-
nate 2m “charge” lines representingGff

0 and n “density”
lines representingGrr

0 . Finally, with each vertexg2m,n at x a
summation(integration) over space positionsx is associated.

The diagrams representing nonlocal parts(i.e., with x1
Þx2) of the two correlation functions,Gffsx1,x2d and
Grrsx1,x2d, are shown in Fig. 1 up to two loop order, when
the verticesg2m,n that satisfym+nø3 are included. By in-
spection of Fig. 1 one easily sees that the number density
fluctuations at different points, not correlated at the zero-loop
level [see Eq.(24)], become correlated beyond MF. This

FIG. 1. Feynman diagrams contributing to the nonlocal(i.e.,
with x1Þx2) parts of the correlation functions,Gffsx1−x2d (a) and
Grrsx1−x2d (b), up to two-loop order. Thin line connecting points
x1 and x2 representsGff

0 sx1−x2d and the black box represents
Grr

0 sx1−x2d=dsx1−x2dGrr
0 . The open square and the bullet repre-

sent the four- and the six-point hypervertices −A4 and −A6, respec-
tively. In the inset the verticesg2m,n contributing to the hyperverti-
ces A4 (top) and A6 (bottom) are shown. The corresponding
expressions forA4 andA6 are given in Eqs.(28) and(29), respec-
tively. Note that since with each vertex a summation(integration)
over space positions is associated, the same holds for hypervertices.
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leads to the conclusion that in the RPM the charge-density
correlations have to be included in the lowest-order theory.

B. WEIGHTED-FIELD APPROXIMATION

In order to develop a simplest field theory which for ionic
systems would predict a qualitatively correct phase diagram,
recall that in MF the average densities are approximated by
the most probable ones. For the RPM we follow this idea and
we approximate the number density by its most probable
value, but we do so for each charge-density fluctuationfsxd
separately, obtainingrmffg. The average number density in
this theory is obtained by averaging the most probable den-
sity rmffg over all charge-density fluctuations(therefore we
call it “weighted field” (WF)). The grand thermodynamic
potential in the WF approximation has the form

− bVWFf0,mg = log JWFf0,mg,

JWFf0,mg =E Df exps− bVef fffgd, s25d

where Vef fffg=VMFff ,rmffgg. In this approximationr̄
=krmffglWF, wherek¯lWF denotes averaging with the Bolt-
zmann factor~exps−bVef fffgd.

For the particular case ofs /a=1 we find rmffg from
dVMF /dr=0 and using bm=−logs1−r0d+logsr0/2d we
obtain

r̄sxd = r0 +
r0s1 − r0d
2r0 − 1 o

n=1
S2r0 − 1

2r0
2 Dns2n − 3d ! !

n!

3kf2nsxdlWF sscd. s26d

Here and in the sequel(sc) indicates that the formula corre-
sponds only to the sc lattice withs /a=1.

The functionalVef fffg can be expanded aboutf=0,

Vef fffg =
1

2o
x

o
x8

Cff
0 sx − x8dfsxdfsx8d

+ o
x
FA4

4!
fsxd4 +

A6

6!
fsxd6 + ¯G . s27d

The coupling constantsA4 and A6 are represented by the
hyper-vertices shown in the inset in Fig. 1, and are expressed
in terms of the verticesg2m,n as follows:

A4 = g4,0− 3
s− g2,1d2

Crr
0 , s28d

A6 = g6,0− 15
s− g2,1ds− g4,1d

Crr
0 − 15

s− g2,1d3s− g0,3d
Crr

03

− 45
s− g2,2ds− g2,1d2

Crr
02 , s29d

where the numerical factors have been calculated according
to standard rules[23]. For s /a=1 the explicit expressions
for the coupling constants are

A4 =
3r0 − 1

r0
3 sscd, s30d

A6 =
3s3 – 15r0 + 20r0

2d
r0

5 sscd. s31d

Note thatA4.0 only for r0.1/3. As already shown in Ref.
[13], for r0,1/3 the order-disorder transition becomes first
order.A6.0 for 0ør0ø1, and the truncated functional(27)
is stable forf→`. From the viewpoint of stability we can
thus truncate the functional at the term~f6. In the perturba-
tion theory described in the previous subsection it means that
we can limit ourselves to the verticesg2m,n with m+nø3.

When the functional(25) is truncated, then in a consistent
approximation we truncate the expansion ofr̄ at the term
proportional tokf4sxdlWF, so that in the diagrammatic expan-
sion of r̄ only verticesg2m,n with m+nø3 are included. In
this approximation we obtain

r̄ = r0 −
g2,1

2Crr
0 kf2sxdlWF −

G4,1
0

4 ! Crr
0 kf4sxdlWF, s32d

where the hypervertexG4,1
0 , obtained by standard rules[23],

is given by(see Fig. 2)

G4,1
0 = g4,1−

6s− g2,2ds− g2,1d
Crr

0 −
3s− g3,0ds− g2,1d2

Crr
02 . s33d

In the particular case ofs /a=1 the average density in this
approximation is explicitly given by

r̄ = r0 +
1 − r0

2r0
Skf2sxdlWF +

2r0 − 1

4r0
2 kf4sxdlWFD sscd.

s34d

In this work we focus on the transition to the charge-ordered
phase, wherekflÞ0. The instability with respect to charge-

ordering is given byC̃ffskbd=0, whereC̃ffskd is inverse to
the full correlation function. In our WF theory we shall con-

sider the approximate formC̃ff
WFskd=G̃ff

WF−1skd, with

G̃ff
WFskd = kf̃skdf̃s− kdlWF. s35d

The main assumption here is that the instability of the uni-
form phase is induced by the charge-density fluctuations
fsxd. We also take into account the most probable number-
density fluctuationsrmffg accompanying them. Remaining
number-density fluctuations are neglected.

FIG. 2. The verticesg2m,n with m+nø3 contributing to the
hypervertexG4,1

0 .
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IV. ORDER OF THE TRANSITION TO THE
CHARGE-ORDERED PHASE

The field theory for the system in which the instability is
induced by fluctuations characterized bykbÞ0 has been de-
veloped by Brazovskii[19], and subsequently used by others
for a description of various systems, including microemul-
sions[24] and block copolymers[25]. When the integral

G0 =E
k

G̃ff
0 skd s36d

representing the loop in the second diagram in Fig. 1(a) di-

verges at the MF line of instabilityS=Sl
MF [whereC̃ff

0 skbd
=0], then the equationC̃ffskbd=0 has no solutions for finite
temperatures. Instead, a first-order transition is found.

The integrandG̃ff
0 skd can be written in the form[see Eqs.

(13) and (17)]

G̃ff
0 skd =

TE

S+ Ṽskd
=

TE

t0 + DṼskd
, s37d

where the critical parameter is defined by

t0 = S− Sl
MF, s38d

SandSl
MF are given in Eq.(17), andDṼskd=Ṽskd−Ṽskbd. G0

is infinite in continuum, on the fcc lattice and in model I
[16], whereas it is finite fors /a=1 and for model III( kb are
isolated vectors), so the Brazovskii argument does not apply
for the latter models. Simulations, however, show continuous
and first-order phase transitions in the first and in the second
case, respectively[3]. The only qualitative difference be-
tween model III and the sc lattice withs /a=1 concerns the
location of the bifurcation vectorskb. For model III the bi-
furcation vectorskbs±1, ±1, ±1d are located inside thek do-
main, whereas at the sc lattice they form the vertices
ps±1, ±1, ±1d of the cube −pøki øp. In order to see the
effect of the location of the bifurcation vectors, we shall
define new fields by shiftingf̃skd, so that the critical wave

vector for each shifted fieldc̃sndsqd=f̃sq+kb
sndd, is q=0. The

original field, critical for 8 wave vectorskb
snd, will be re-

placed by several fields, some of them being critical, and the
functional will assume a different form. The advantage is the
fact that the functionals of several fields with the critical
wave vectorq=0 have been studied already[26–29], and we
can apply the known methods to our particular case. In de-
termining the order of the transition we shall limit ourselves
to A4.0, where MF predicts a continuous transition.

1. sc lattice withs /a=1: Bifurcation vectors at the
domain boundary

Let us focus first on the sc lattice. We divide the domain
−pøki øp into different parts in such a way that for eachki
we split f−p ,pg into f−p ,−p /2gø f−p /2 ,p /2gø fp /2 ,pg.
Then we consider new fields defined on the new domainD,
such thatqPD if −p /2øqi øp /2. The full and the new
domain are shown in Fig. 3 and 4 respectively in the case of

d=2. The first new field,c̃1sqd=f̃sqd, is just the original

field for qPD [see Fig. 4(a)]. For the original fluctuations
with the wave vectors located outside the new domain we
define new fields just by shifting the arguments, namely,

x̃isqd = f̃sq ± peid, s39d

where +pei and −pei corresponds toqi ,0 andqi .0 respec-
tively. These three fields describe fluctuations with one coor-
dinate outside the new domain. The fieldsx̃isqd are defined
at the whole domainD [see Figs. 4(b) and 4(c) for the case
d=2]. Next,

j̃isqd = f̃sq ± pej ± pekd, s40d

wherei Þ j ,k and j ,k, and where, as above, +pen and −pen
corresponds toqn,0 and qn.0 respectively, withn= j ,k.
These three fields describe the fluctuations with two coordi-
nates of the wave vector outside the new domain. Again, the
fields are defined at the whole domainD. Finally, we define
the field corresponding to fluctuations with all the coordi-
nates outside the new domain,

FIG. 3. The full k domain in the case of a two-dimensional
system and the way it is divided into different parts. The central,
shaded square is the new domainD. The wave vectors with one
coordinate outsideD belong to the gray rectangles. The critical
fluctuations are shown as black regions near the corners.

FIG. 4. Reduction of the original domain to theq domainD for
the new fields, obtained by shifting the original fieldf̃skd in the
case of a two-dimensional system:(a) the first new field is just the
original field for wave vectorsk belonging toD; (b) and(c) the new
fields x̃isqd correspond to the original field with one coordinate of
the wave vectorsk outsideD. The thick vertical(b) and horizontal
(c) lines represent the corresponding lines in Fig. 3(d) the critical

field c̃bsqd corresponds to the fieldf̃skd for the wave vectorsk
with all coordinates outsideD. Note that the critical regions located
near the corners in Fig. 3 form here a circle centered atq=0.
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c̃bsqd = f̃sq ± pe1 ± pe2 ± pe3d, s41d

where +pen and −pen corresponds toqn,0 andqn.0 re-
spectively, withn=1,2,3.Note that the critical fluctuations
f̃skbd with kb=s±p , ±p , ±pd are all included in the last

field c̃bs0d [for d=2 this case is shown in Fig. 4(d), where
the central black circle represents the critical fluctuations,
located at the corners in Fig. 3]. The fieldsc1, xi andji are
noncritical, since they correspond to the fieldf̃skd with k far
from the critical vectorkb. The functionalV can now be
written in terms of the new fields, with the integration ink
space reduced to the new domain. The Gaussian partV2

r of
the new functionalVr can be written as

bV2
r fCn,cbg =

1

2
SpbE

36
DE

qPD

fc̃bsqdc̃bs− qdst0 + q2d

+ o
n=1

7

ACn
sqdC̃ns− qdC̃nsqdg, s42d

where t0=36t0/p, with t0 defined in Eq.(38), q= uqu and
termsOsq4d have been neglected.Cn denote all the noncriti-
cal fieldsc1, xi andji defined above andACn

sqd never van-

ish. Only the fieldc̃bsqd is critical at t0=0 for q=0. In MF
the instability of the disordered phase is induced att0=0 by

c̃bs0d with C̃n=0. The dominant higher-order term is of the
usual,cb

4 form for vanishing noncritical fields. The noncriti-
cal fields can be integrated out, leading to the same form of
the functional of the critical field, with modified parameters
[28]. We have thus reduced the functional to the standard
form of the Ising universality class. The deviation ofS from
the value corresponding to the MF transition,t0=S−Sl

MF,
plays analogous role as the reduced temperature in the Ising-
like systems. The above reduction proves that on the sc lat-
tice the transition to the charge-ordered phase is continuous
for A4.0 and belongs to the Ising universality class.

2. s /a=2 (model III): Bifurcation vectors inside the domain

In this case we again divide thek domain into different
parts. The above analysis indicates that the fields obtained
from f̃skd, with k located far fromkb, are noncritical and in
the first approximation can be disregarded. If the bifurcation
vectors are located inside the domain, however, there exists a
sphereS, which is contained in the domain −pøki øp and
centered at the critical modekb. We considerkb located far
from the domain boundaries and the radius of the sphereS
described above is finite. Similar case has been studied in
Ref. [29] in the context of microemulsions. If there aren
bifurcation (or critical) vectors, there aren different critical
fields, namely

c̃isqd = f̃skb
sid + qd, s43d

where kb
sid denotes theith bifurcation vector, andc̃isqd is

defined in the sphereS centered at the vectorkb
sid, i.e., kb

sid

+q belongs to the domain −pøki øp. In the critical region

we can study the functionalV of the new critical fieldsc̃isqd.

For model III there are 8 bifurcation vectors,kb
=kbs±1, ±1, ±1d, wherekb<p /4. We can divide the bifur-
cation vectors into two groups. To the first group belong the
bifurcation vectors with the third coordinate positive, i.e., we
havekbsa ,b ,1d, wherea ,b= ±1. There are 4 such vectors,
kb

s1d=kbs1,1,1d ,kb
s2d=kbs−1,−1,1d ,kb

s3d=kbs−1,1,1d and
kb

s4d=kbs1,−1,1d. The vectors in the second group,kbsa ,b ,
−1d, are −kb

s1d ,−kb
s2d ,−kb

s3d ,−kb
s4d. We shall denote the fields

associated with the first group of bifurcation vectors as

c̃i
+sqd = f̃skb

sid + qd, i = 1,2,3,4 s44d

and the remaining fields as

c̃i
−sqd = f̃s− kb

sid + qd, i = 1,2,3,4. s45d

Sincef̃*skb
i +qd=f̃s−kb

i −qd [reality condition forfsxd], we

havec̃i
+*sqd=c̃i

−s−qd. In real-space representation we obtain
complex fields

ci
+sxd =E

qPS

c̃i
+sqde−iq·x s46d

and

ci
−sxd =E

qPS

c̃i
−sqde−iq·x, s47d

where the integration is overS. Note thatci
−sxd is a complex

conjugate toci
+sxd, henceci

±sxd=Fisxd± iCisxd, whereFisxd
andCisxd are real.

Let us write the Gaussian part ofV in terms of the new
fields. Since we are interested only in the stability of the
disordered phase, the integral over the full domain ink
space,ek , can be replaced by the sum of integrals over the 8
spheresS centered at the 8 vectorskb

snd, since the contribu-
tion from the neighborhood of each bifurcation vector is in-
cluded, and the contributions from the noncritical fields can
be neglected. Hence,

E
k

f̃skdC̃ffskdf̃s− kd s48d

can be replaced by

2E
q
o
i=1

4

C̃isqdc̃i
+sqdc̃i

−s− qd = 2E
q
o
i=1

4

C̃isqdfF̃isqdF̃is− qd

+ C̃isqdC̃is− qdg, s49d

when the stability of the uniform phase is studied. Near each

bifurcation vector C̃ffskd=C̃ffs±kb
sid+qd=C̃isqd; C̃absqd,
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where in model III thei-th vector kb
sid=kbsa ,b ,1d corre-

sponds to the paira ,b= ±1. We have

C̃absqd = t0 +
1

2
fAq2 + Bsabq1q2 + aq1q3 + bq2q3dg

= t0 + q2fa,bsu,fd, s50d

where q=sq1,q2,q3d, q= uqu, and A=]2Ṽ/]ki
2uukiu=kb

, B

= u]2Ṽ/]ki ]kjuukiu=ukj u=kb,iÞ j. On the right-hand side(RHS)

C̃absqd is written in spherical variables. The form ofC̃isqd is
different for differenti. However, all the fieldsFi andCi are
critical for the same thermodynamic statet0=0 for q→0. By
a suitable change of variables we can show that for any in-

tegerkeq C̃i
ksqd=eq C̃1

ksqd; the above holds in particular for
k=−2.

The fourth order term can be written as

Vint =
A4

4!
E

k1

E
k2

E
k3

E
k4

dSo
i=1

4

k iDp
j=1

4

f̃sk jd

=
A4

4!
E

q1

E
q2

E
q3

E
q4

o
i,j ,k,n=1

4

c̃i
±sq1dc̃ j

±sq2dc̃k
±sq3dc̃n

±sq4dds±kb
i ± kb

j ± kb
k ± kb

n + o
i=1

4

qid. s51d

The above symbolic notation means 24 terms, associated with different distributions of ± sign for eachsi , j ,k,nd. As before, the
contributions from the noncritical modes have been neglected. Since we consider a small domainS, the equality
±kb

i ±kb
j ±kb

k±kb
n+oi=1

4 qi =0 can be satisfied only for ±kb
i ±kb

j ±kb
k±kb

n=0. After some combinatorics we obtain

Vint =
A4

4!
E

q1

E
q2

E
q3

E
q4

dSo
i=1

4

qiDf6o
i=1

4

c̃i
+sq1dc̃i

+sq2dc̃i
−sq3dc̃i

−sq4d + 4 ! o o
i, j

c̃i
+sq1dc̃i

−sq2dc̃ j
+sq3dc̃ j

−sq4d

+ 4 ! sc̃1
+sq1dc̃2

+sq2dc̃3
−sq3dc̃4

−sq4d + c̃1
−sq1dc̃2

−sq2dc̃3
+sq3dc̃4

+sq4ddg. s52d

In real-space representation

Vint = o
x

fu1
0o

i

sFi
2sxd + Ci

2sxdd2 + u2
0o

i, j

sFi
2sxd + Ci

2sxddsF j
2sxd + C j

2sxdd + u3
0sF1sxdF2sxdF3sxdF4sxd

+ C1sxdC2sxdC3sxdC4sxd+ F1sxdC2sxdF3sxdC4sxd + F1sxdC2sxdC3sxdF4sxd + C1sxdF2sxdC3sxdF4sxd

+C1sxdF2sxdF3sxdC4sxd − C1sxdC2sxdF3sxdF4sxd − F1sxdF2sxdC3sxdC4sxddg s53d

where

u1
0 =

A4

4
, u2

0 = A4, u3
0 = 2A4. s54d

The functional(53) is similar to the functional obtained for
type II antiferromagnets in Ref.[26], and studied withine
expansion in Ref.[27]. Note also that the form of the func-
tional is independent of the explicit form ofA4, i.e. on the
form of Fhs in Eq. (8).

Here we find the RG flow equations for the renormalized
couplingsui, determine the fixed points and show that they
are all unstable. We use the standard method of dimensional
regularization and minimal subtraction of pole terms ine
=4−d [23,30]. To one-loop order we obtain the RG flow
equations

,
dūis,d

d,
= bui

fūjs,dg, ūis1d = ui , s55d

bui
= m]muiuu0

= − eui + anj
sidunuj . s56d

Herem is the arbitrary “momentum”(i.e., the inverse length)
scale, anduu0

means derivative at fixed bare couplingsui
0.

Equations(55) describe the flow of the renormalized cou-
plings under rescaling the “momentum,”,m̄s,d=m,. The
critical region corresponds to,→0. To one-loop order the
dimensionless renormalized coupling constants are related to
the bare quantities by[23,30]

ui
0 = K−1meFui +

anj
sid

e
unujG . s57d

Hereeq C̃ab
−2sqd=m−eK /e in 4−e dimensions. The factorsanj

sid

can be easily obtained by considering several four-point cor-
relation functions for the fieldsFi ,Ci, and to one-loop order
the explicit forms of theb-functions are

bu1
= − eu1 + 40u1

2 + 6u2
2, s58d

bu2
= − eu2 + 16u2

2 + u3
2 + 32u1u2, s59d
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bu3
= − eu3 + 24u2u3. s60d

There are four fixed points of the flow equations:

sId u1
* = u2

* = u3
* = 0, s61d

sII d u1
* =

e

40
, u2

* = u3
* = 0, s62d

sIII d u1
* =

e

64
, u2

* =
e

32
, u3

* = 0, s63d

sIV d u1
* =

3e

128
, u2

* =
e

64
, u3

* = 0. s64d

For the couplingu3 we obtain, at fixedu1=u1
* , u2=u2

* , the
flow

ū3s,d = u3 expsv3
* log ,d, s65d

wherev3
* =−e+24u2

* is negative for all the fixed points. Thus,
for ,→0, uū3s,du increases, which means that all the fixed
points are unstable in the directionu3. This indicates the
fluctuation-induced first-order transition[27], as observed in
simulations[3]. Note that on the RG flow diagram there are
fixed points stable on the plane and on the axis. However, the
bare copling constants are not independent[see Eq.(54)],
hence stability in a subspace of the space of couplig con-
stants does not change our conclusion.

The functional obtained for model III is not complete in
the sense that the Hamiltonian with an eight-component OP
in general possesses six independent coupling constants as-
sociated with six fourth-order interactions[26]. In Coulomb
systems, however, there is a single fourth-order termA4 in
the effective functional(27). Therefore, the complete Hamil-
tonian derived in Ref.[26] is reduced to the Hamiltonian
describing model III when the coupling constantsui

0 are re-
lated toA4 according to Eq.(54) for i ø3 and fori .3, ui

0

=0. The b-functions and the fixed points obtained for the
general model in Ref.[27] reduce to Eqs.(58)–(60) (and
Eqs. (61)–(64), respectively, if for i .3, ui ;0. We could
assume that our model corresponds to the complete model
with a special choice of the bare coupling constants(54) in
the six-dimensional coupling-constants space. As shown in
Ref. [27], all the fixed points in the general model are un-
stable to one-loop order, and we again obtain a first-order
transition.

For models as complex as the considered one the one-
loop results cannot be considered as fully reliable. For ex-
ample, the cubic model with the realN-component OP after
30 years of intensive studies has been proved to belong to the
cubic universality class[31–34]. We cannot exclude the pos-
sibility that a stable fixed-point emerges beyond the one-loop
order. However, higher-order RG approximations, used in
Refs.[31–34], go beyond the scope of this work. We believe
that the fixed points remain unstable beyond the one-loop
approximation, because simulations show a first-order tran-
sition.

V. THE l-LINE ON THE SC LATTICE BEYOND MF

The purpose of this section is a determination of the
fluctuation-induced shift of thel-line for s /a=1. In MF the
transition is continuous forA4.0, i.e. for r0.1/3, with
r0=1/3 at the TCP. Weshall find the temperature in the
self-consistent Hartree approximation, and the density in the
approximation developed here in Sec. III. In our approxima-
tion the TCP is given by the corresponding shift of the MF
result.

In the Hartree approximation the correlation function is
given by an infinite series of effectively one-loop diagrams,
shown in Fig. 5(top). In Fourier representation a single loop
in Fig. 5 corresponds to the integral(36) and other diagrams
are products ofG0. The self-consistent approximation is ob-
tained, when in Eq.(36) the integrand is replaced by the
correlation function which is the result of the whole resum-
mation(Fig. 5, bottom). The resulting equation is then solved
self-consistently. In the self-consistent Hartree approxima-
tion, discussed in more detail, e.g., in Refs.[24,25], the
k-dependence of the correlation function is the same as given
in Eq. (37), and only the critical parametert0 is rescaled.
Diagrams other than that shown in Fig. 5(bottom) would

lead to a change of thek-dependent part ofG̃ffskd. How-

ever, due to the divergence ofG̃ff
0 skbd for S=Sl

MF, the dia-
grams shown in Fig. 5(bottom) give the dominant contribu-

tion to G̃ffskd near the line of instability[19,24,25]. We

denote thek-integral of G̃ffskd by Gstd, and the rescaled

critical parameter byt [i.e., in this approximationC̃ffskd
=t+DṼskd]. The self-consistent equation forG̃ffskd as-
sumes the form(see Fig. 5)

G̃ffskd = G̃ff
0 skdo

n=0
F− SA4

2
Gstd +

A6

23 G2stdDG̃ff
0 skdGn

= FG̃ff
0–1skd + GstdSA4

2
+

A6

23 GstdDG−1

. s66d

From Eq. (66) we obtain the explicit form of thel-line

C̃ffskbd=t=0,

FIG. 5. Top: a few diagrams contributing to the charge-charge
correlation function in the Hartree approximation. Bottom: Dia-
grammatic representation of the self-consistent equation for the
charge-charge correlation function. The thick line represents the

correlation functionG̃ffskd, thin line is the Gaussian correlation

function G̃ff
0 skd, the box and the bullet represent the hypervertices

−A4 and −A6, respectively, and thek integral is associated with
each loop(see also Fig. 1).
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t0 + Gs0dSA4

2
+

A6

23 Gs0dD = 0. s67d

On the sc lattice the form ofGs0d is [see Eqs.(37) and (2)
and the Appendix]

Gs0d = TEg1, g1 =
3

p
E

k
S 6

3 + oi
coski

− 1D < 1.91.

s68d

Equation(67) can be solved easily. The explicit expression
for the line of instability in the self-consistent Hartree ap-
proximation is

Sl =

2s2 +A4r0g1dFÎ1 +
2A6r0

2g1
2Sl

MF

s2 +A4r0g1d2 − 1G
A6r0

2g1
2 . s69d

The l-line S=Slsr0d is shown in Fig. 6 as a dashed line.
As discussed in Sec. III, the average number density dif-

fers from the most probable one. We can include the effect of
the charge-density fluctuations on the average number den-
sity by using Eq.(34). In the self-consistent Hartree approxi-
mation for the charge-charge correlation function we assume

kf2sxdlWF = Gs0d = g1Sr0. s70d

Next we assume that the four-point function is a product of
two-point functions up to a numerical factor[23] (see
Fig. 7),

kf4sxdlWF = 3kf2sxdlWF
2 , s71d

i.e., we neglect the connected part ofkpi
4fsk idlWF, which at

the zero-loop order is proportional to −A4piG̃ff
0 sk id [23]. In

the self-consistent Hartree approximation the two-point func-
tion in Eq. (71) is given by Eq.(70). The explicit form ofr̄
along thel-line in this approximation is[see Eqs.(34), (70),
and (71)]

r̄ = r0 +
g1Sls1 − r0d

2
+

3g1
2Sl

2s2r0 − 1ds1 − r0d
8r0

. s72d

The l-line Slsr̄d given by Eqs.(69) and (72) is shown as a
solid line in Fig. 6. It starts at the TCP, obtained by the
corresponding shift of the TCP found in MF. Our result is
compared with other theoretical and simulation results in
Table I.

VI. SUMMARY

The effects of charge-density fluctuations on the order-
disorder transition for different values of the space discreti-
zations /a have been described in Refs.[16,17]. In this work
two cases,s /a=1 ands /a=2 have been analyzed in detail.
We have shown that in both models the instability of the
disordered phase is induced on the MF level by charge-
density wavesf̃skd with 8 wave vectorskb

snd. However, for
s /a=1 these vectors form vertices of the cubic domain in
the k-space, whereas fors /a=2 they are located inside the
domain, far from the boundary. For each model we con-

structed a functional depending on the shifted fieldsc̃sndsqd
=f̃sq+kb

sndd. Next we have shown that fors /a=1 there is
only one critical field and near the line of instability of the
disordered phase the functional reduces to the well known
functional of the Ising-university class. Hence, the transition
is continuous. In contrast, there are 8 critical fields fors /a
=2, and there is no stable fixed point of the RG-flow
equations—hence a first-order transition should be expected.

On the sc lattice withs /a=1 the instability is induced by
the charge-density waves compatible with the lattice, and
they all lead to a unique structure(up to +/− symmetry, see
Fig. 1 in Ref.[15] ). The unique structure follows from the
particular location of the critical wave vectors at the vertices
of the cubick-domain. The unique ordered structure can be
easily pinpoint to the lattice and the order can grow gradu-
ally. The transition is thus continuous. Otherwise an interfer-
ence of different structures associated with different wave
vectorskb

snd restores the disordered phase. The ordered struc-
ture is not washed out by fluctuations only for a finite value
of the OP, i.e., the transition is first order. The above analysis
indicates that the continuous transition and the TCP are quite
rare, and occur in a system with a special template.

In this work we have also developed an approximate
theory allowing for a determination of quantiative effects of
fluctuations. We have applied the formalism developed in
Sec. III to a determination of a position of thel-line on the
sc lattice withs /a=1. The result is shown in Fig. 6 and
compared with earlier theories and simulations in Table I. At

FIG. 6. Thel line in the self-consistent Hartree approximation.
The dashed line gives the transition temperature as a function of the
most probable density,T* =Slsr0d [see Eq.(69)]. The solid line
T* =Slsr̄d is the transition temperature as a function of the average
density r̄ given in Eq. (72). Temperature is in standard reduced
units ( T* =kTDs /e2) and the fraction of ion-occupied sitesr is
dimensionless.

FIG. 7. The diagrams contributing to the shift of the density of
ions (32) in the Hartree approximation. See also Figs. 2 and 5.
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close packingsŝ2;1d we obtain T* <0.33 at thel-line,
which is lower than the result of simulations,T* <0.5 [35].
However, the weighted field theory, where number-density
fluctuations are allowed, is not expected to be valid forr
;1, therefore forr close to 1 the exactl-line deviates from
our result. In simulations the potential 1 /r was used, and not
the form we have considered for a lattice system. There are
also standard sources of inaccuracy(finite system, etc.) of
simulations. The position of the TCP is thus probably some-
what different. Similarly, the result of an exact theory should
be somewhat different from our approximation.

The results of this and earlier works show that the theory
introduced in Ref.[13] leads to qualitatively correct phase
diagrams in all considered cases, including those which have
not been described within any other theory(model I, model
III, fcc lattice, LRPM with additional short-range forces).
Moreover, the quantitative accuracy of the theory is also sig-
nificantly better than the accuracy of the other theories.
Clearly, further studies are necessary for a determination of
phase diagrams for other values ofs /a and in continuum
space on a quantitative level, but the formalism developed
here seems to be particularly well suited for this purpose.
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APPENDIX: LATTICE COULOMB POTENTIAL

The lattice Coulomb potential is a solution of the dis-
cretized Poisson-Boltzmann equation, and in Fourier repre-
sentation assumes the form

Ṽcskd =
2p

3f1 − f̃ lattskdg
, sA1d

where the index latt denotes the sc, fcc or the bcc lattice. The

lattice characteristic functionf̃ lattskd depends on the kind of

the lattice. For the sc, fcc, and bcc latticesf̃ lattskd is given by

f̃sc=
1

3o
i=1

3

coski , sA2d

f̃ fccskd =
1

3o
i, j

coskicoskj , sA3d

and

f̃bccskd = p
i=1

3

coski , sA4d

respectively. The constantsV0
sc andVn

sc are defined via equa-
tions

V0
sc=E

k

1

3„1 − f̃scskd…
, sA5d

Vn
sc=E

k

pi=1

n
coski

3„1 − f̃scskd…
. sA6d

The values we need in this work are

V0
sc< 0.5055, sA7d

V1
sc< 0.172, V2

sc< 0.11, V3
sc< 0.087. sA8d
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